A Radiation-Hard Redundant Flip-Flop to Suppress Multiple Cell Upset by Utilizing the Parasitic Bipolar Effect

نویسندگان

  • Kuiyuan Zhang
  • Jun Furuta
  • Ryosuke Yamamoto
  • Kazutoshi Kobayashi
  • Hidetoshi Onodera
چکیده

According to the process scaling, radiation-hard devices are becoming sensitive to soft errors caused by Multiple Cell Upset (MCUs). In this paper, the parasitic bipolar effects are utilized to suppress MCUs of the radiation-hard dual-modular flip-flops. Device simulations reveal that a simultaneous flip of redundant latches is suppressed by storing opposite values instead of storing the same value due to its asymmetrical structure. The state of latches becomes a specific value after a particle hit due to the bipolar effects. Spallation neutron irradiation proves that MCUs are effectively suppressed in the D-FF arrays in which adjacent two latches in different FFs store opposite values. The redundant latch structure storing the opposite values is robust to the simultaneous flip. key words: DMR, soft error, MCU, device simulation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the Distance Dependent Multiple Cell Upset Rates on 65-nm Redundant Latches by a PHITS-TCAD Simulation System

Recently, the soft error rates of integrated circuits is increased by process scaling. Soft error decreases the tolerance of VLSIs. Charge sharing and bipolar effect become dominant when a particle hit on latches and flip-flop. soft error makes circuit more sensitive to Multiple Cell Upset (MCU). We analyze the MCU tolerance of redundant latches in 65 nm process by device simulation and particl...

متن کامل

Device-level Simulations of Parasitic Bipolar Mechanism on Preventing MCUs of Redundant Flip-Flops

Parasitic bipolar mechanisms can effectively prevent MCUs of redundant flip-flop, which improve the tolerance of soft errors. Device-level simulations reveals that no MCU occurs in redundant latches storing the opposite values by the parasitic bipolar effect, while MCU occurs by a particle hit with high energy in the redundant latches storing the same value.

متن کامل

A new low power high reliability flip-flop robust against process variations

Low scaling technology makes a significant reduction in dimension and supply voltage, and lead to new challenges about power consumption such as increasing nodes sensitivity over radiation-induced soft errors in VLSI circuits. In this area, different design methods have been proposed to low power flip-flops and various research studies have been done to reach a suitable hardened flip-flops. In ...

متن کامل

Hardened Flip-Flop Optimized for Subthreshold Operation Heavy Ion Characterization of a Radiation

A novel Single Event Upset (SEU) tolerant flip-flop design is proposed, which is well suited for very-low power electronics that operate in subthreshold (<Vt ≈ 500 mV). The proposed flip-flop along with a traditional (unprotected) flip-flop, a Sense-Amplifier-based Rad-hard Flip-Flop (RSAFF) and a Dual Interlocked storage Cell (DICE) flip-flop were all fabricated in MIT Lincoln Lab’s XLP 0.15 μ...

متن کامل

A Comparison of Fault-Tolerant State Machine Architectures for Space-Borne Electronics - Reliability, IEEE Transactions on

Conclusions Very large scale integrated (VLSI) circuits used in the space & nuclear industry are continuously subjected to ion radiation. As the limits of VLSI technology are pushed towards sub-micron levels in order to achieve higher levels of integration, devices become more vulnerable to radiation induced errors. These radiation induced errors can lead to system failure, particularly if they...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEICE Transactions

دوره 96-C  شماره 

صفحات  -

تاریخ انتشار 2013